Shil’nikov chaos control using homoclinic orbits and the Newhouse region

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Newhouse Phenomenon and Homoclinic Classes

We show that for a C residual subset of diffeomorphisms far away from tangency, every non-trivial chain recurrent class that is accumulated by sources ia a homoclinic class contains periodic points with index 1 and it’s the Hausdorff limit of a family of sources.

متن کامل

Homoclinic Orbits and Chaos in Discretized Perturbed NLS Systems: Part I. Homoclinic Orbits

The existence of homoclinic orbits, for a finite-difference discretized form of a damped and driven perturbation of the focusing nonlinear Schroedinger equation under even periodic boundary conditions, is established. More specifically, for external parameters on a codimension 1 submanifold, the existence of homoclinic orbits is established through an argument which combines Melnikov analysis w...

متن کامل

The Existence of Shilnikov Homoclinic Orbits in the Michelson System: A Computer Assisted Proof

In this paper we present a new topological tool which allows to prove the existence of Shilnikov homoclinic or heteroclinic solutions. We present an application of this method to the Michelson system y′′′ + y′ + 0.5y = c [16]. We prove that there exists a countable set of parameter values c for which a pair of the Shilnikov homoclinic orbits to the equilibrium points (±c√2, 0, 0) appear. This r...

متن کامل

Breathers and homoclinic orbits

s of Short Reports final: June 27, 2002 http://www.camtp.uni-mb.si/chaos/2002/ A method to enhance noise reduction for data generated from a known differential equation P. G. Vaidya, Savita Kallappa Angadi Mathematical Modelling Unit National Institute of Advanced Studies, Bangalore, India There are several papers which show the use of principle component analysis to reduce noise from a discret...

متن کامل

Random Homoclinic Orbits

We introduce random homoclinic points and orbits for random dynamical systems with hyperbolic stationary orbits and investigate their meaning for irregular behaviour in form of a stochastic version of the Birkhoo-Smale Theorem. In particular we show that transversal random homoclinic points cause a conjugacy of the random dynamical system in a part of the phase space to a random shift system.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Chaos, Solitons & Fractals

سال: 2007

ISSN: 0960-0779

DOI: 10.1016/j.chaos.2006.04.034